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Abstract
We show that two line defects in biaxial nematics may form a dynamically
stable bound state if they are linked, almost parallel to each other and repelling.
Such a situation may take place for line defects of certain topology. It occurs
also for almost parallel vortices in superfluids and superconductors.

PACS numbers: 02.40.Re, 61.30.Jf, 67.40.Vs

1. Introduction

In the last 30 years, topology has demonstrated its advantage in the theory of condensed
matter. The main application of topology is the classification of thermodynamic phases and
defects in ordered media such as liquid crystals and superfluid 3He [1–3]. However, more
complicated configurations such as linking defects have not yet been fully investigated. Such
configurations are of importance in such interesting physical phenomena as weak turbulence
in superfluid helium and liquid crystals, and spinodal decomposition into ordered phase in the
same systems [4, 5]. Even less is known about the dynamical stability of these configurations.
In this paper, we prove the existence of linked defects in biaxial nematics, the liquid crystal
with the complicated order parameter. We point out that a stable configuration of this type
appears as an asymptotic solution (at t → ∞) of the Ginzburg–Landau (GL) equations, and
hence can be considered as a bound state of two line defects.

The proposed method is quite general and based on the analysis of the GL equations and
topology of the order parameter of a corresponding system. The existence of such bound
defects in other systems, such as cholesterics, blue phases, superconductors and superfluids,
depends on physical conditions which can or cannot be realized in the concrete medium. We
leave this discussion to the end of the paper.
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2. General model

We start our investigation from biaxial nematics, assuming that our approach of constructing
bound states of linked defects may be applicable also to other systems.

2.1. Main equations and definitions

The simplest form of the free energy of biaxial nematics can be written as follows [2, 6],

F =
∫

V

(�(Tr[A2], Tr[A3]) + γ1∂rAqp∂rAqp + γ2∂qArp∂pArq + γ3∂qArq∂pArp) dV, (1)

where Apq is the order parameter describing a biaxial nematic, that is a real, symmetric-
traceless matrix (3×3) [1, 2, 6]. The Latin indices p, q, etc label the Cartesian coordinates on
V ⊂ R

3 with the usual sum over repeated indices. The first term under the integral represents
the density of ‘potential’ energy and the next three terms represent the energy of deformation.
Here γ1, γ2 and γ3 are elastic constants.

The density of potential energy � in equation (1) attains its minimum at an orbit M of
SO(3) action:

g : A ⇒ gAg−1, g ∈ SO(3).

The orbit M consists of real traceless symmetric matrices A = ‖Apq‖ with all eigenvalues
being different. It is isomorphic to the coset space SO(3)/Z2 × Z2 � SU(2)/Q.

Possible types of line defects in the biaxial nematics are determined by the fundamental
group π1 of the order parameter space [1, 2], which were firstly described in [7].

π1(M) = Q. (2)

Here Q is the unit quaternion group:

Q = {e,−e, i,−i, j,−j, k,−k}, (3)

where

i2 = j 2 = k2 = −e i = jk = −kj etc.

The set of topological charges of line defects or topological types of the defects is the set
composed of elements of free homotopy group of the order parameter space (see for example
[1, 2]). The free homotopy group is the set of conjugating classes of the based homotopy
group π1. Thus there are four different topological types of line defects in biaxial nematics.
They correspond to the conjugating classes of −e,±i,±j and ±k of the quaternion group,
respectively. The element e corresponds to a nonsingular solution.

We assume for the sake of simplicity that there is only one stable structure of line defects
of each topological type. In this case a defect is determined uniquely by its topological type.

2.2. Bound states of almost parallel line defects

2.2.1. Separate line defects. Let us consider a single line defect in a solid torus S ′1 × D2,
where S ′1 is a circle and D2 is a disc. Thus 	r ∈ {(x, y, z mod Lz) : x2 +y2 < L2

⊥}. We assume
‘slipping’ boundary conditions at x2 + y2 = L2

⊥: ∂nApq = 0. Let the defect be a straight
line parallel to the z-axis and placed at x = y = 0. Assume that L⊥ ∼ Lz = L‖, and that
the crosswise size of the core of the line defect rc, determined by the elastic constants γα and
the ‘curvature’ of the potential � at the minimum, is much less than L⊥. Then out of the
core the order parameter, Apq belongs to a small vicinity (in the sense of the Cartan–Killing
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metric) of the orbit M, where � attains its minimum. The eigenvalues of matrices belonging
to the orbit M may be parametrized by the following way,

2
3S, − 1

3 (S − 3T ), − 1
3 (S + 3T ),

where S and T are, respectively, the uniaxial and biaxial order parameters, and S > 3T > 0.
Thus the free energy density is reduced to the deformation energy only1,

Fgrad = γ1∂rAqp∂rAqp + γ2∂qArp∂pArq + γ3∂qArq∂pArp, (4)

providing that the matrix-order parameter Apq belongs now to the orbit M. The matrix-
order parameter depends only on the angle ϕ in the (x, y)-plane at rc � r � L⊥. Hence
Fgrad ≈ f (ϕ)/r2 at rc � r � L⊥. Therefore, the integration of Fgrad over the volume V

can be divided into multiple integrals over ϕ, z and r, that is cylindrical coordinates connected
with the defect. The integration over ϕ at rc � r � L⊥ gives some constant depending of
the parameters of the model (S, T , γi) and the type of defect, and the integration over z gives
the length of defect L‖ as a factor. The integral over r diverges logarithmically at small and
large r at rc � r � L⊥. Thus the free energy of the line defect of type λ ∈ {−e, i, j, k} can
be presented as

Fλ = KλL‖ ln L⊥/rc

(
1 + O

(
1

ln L⊥/rc

))
, (5)

where

Kλ = γ1S
2K̄λ (T /S, γ2/γ1, γ3/γ1) . (6)

2.2.2. Two linked line defects. Consider now a system of two almost parallel line defects
η1 and η2 of types λ1 and λ2. Assume that angles between tangent lines of η1 and η2 and the
z-axis is small (� π/2) and that the distance between the defects in the (x, y) planes obeys
the condition rc � r � L⊥ in each cross-section perpendicular to the z-axis. Besides, we
suppose that the dependence on z is smooth enough. Assuming also, that

λ1 ◦ λ2 = λ3, (7)

we may write

F12 = F̄12 + γ1S
2O (1) (8)

at rc/r → 0 and r/L⊥ → 0, where

F̄12 = γ1S
2

[
K̄λ1

∫ L‖

z=0
ln

r(z)

rc
dl1 + K̄λ2

∫ L‖

z=0
ln

r(z)

rc
dl2 + K̄λ3

∫ L‖

z=0
ln

L⊥
r(z)

dz

]
. (9)

To obtain this equation, we assumed that the order parameter obeys the exact GL equation
in the region out of the cores of the defects that provides minimum of the free energy in this
region. In this case the free energy of the whole system becomes the functions of position of
the defects with a relative accuracy O (1/ ln(r/rc)). Just this expression for the functional of
free energy is presented in equation (9). It was derived analogously to equation (5).

Suppose that the constants K̄λ1 , K̄λ2 and K̄λ3 obey the following opposite ‘triangle’
inequality:

K̄λ3 > K̄λ1 + K̄λ2 . (10)

1 General form of the deformation enegry for biaxial nematics may be found in [8]. The subsequent consideration,
excluding of course section 3, does not depend on the concrete form of the deformation energy.
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Figure 1. Example of two linked line defects with n = 1.

It means that line defects repel each other. To clarify this fact we may consider two parallel
straight defects. Then equation (10) gives

F̄12 = γ1S
2L‖[K̄3 ln L⊥/rc + (−K̄3 + K̄1 + K̄2) ln r/rc],

where r is the distance between the defects, and the shortcuts K̄λ1 = K̄1, . . . are introduced
here and below if it does not lead to confusion. The latter equation means that the free energy
decreases when the distance between the defects increases that corresponds to repulsion.

If line defects are not linked, the free energy equation (9) reaches its minimum when the
line defects are parallel to the z-axis and the distance between them is of the order of L⊥/2.

Assume now that line defects are linked, and the linking number is equal to n > 0.
In this case increasing the distance between the defects leads to a considerable increase in
the lengths of line defects, and hence to a growth of the free energy. At sufficiently small
distances between the defects, the repulsion of the two defects dominates. It means that there
is a minimum of the free energy for a certain distance between defects.

Now we prove our main statement that the minimum is attained for the state when line
defects have the form of helices of certain radii r1 and r2, respectively, nested in each other.
See figure 1 as an example for n = 1.

Assume that the helices have the same axis and the same pitch and turned about 180◦

around each other. In this state, F̄12 can be evaluated at r1,2/L‖ → 0 as

F̄12 = F̃12 + γ1S
2O

(
r4

1,2

L4
‖

ln
r1,2

rc

)
,

where

F̃12 = γ1S
2L‖

{
(K̄1 + K̄2) ln

r1 + r2

rc
− K̄3 ln

r1 + r2

L⊥
+ 2π2n2

(
K̄1

r2
1

L2
‖

+ K̄2
r2

2

L2
‖

)
ln

r1 + r2

rc

}
,

(11)

where F̃12 depends only on r1 and r2. To find a minimum of expression (11) we differentiate
it with respect to r1 and r2. It follows from a straightforward calculation2 that the minimum is
achieved at r1 = r̃1 and r2 = r̃2, whereas the latter values are defined by the expressions,

r̃1 = r̄1

(
1 + o

(
1

	1−α

))
, (12)

r̃2 = r̄2

(
1 + o

(
1

	1−α

))
, (13)

2 Some details are placed in the appendix.
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where α is any number 0 < α < 1, and

r̄1 = L‖
2πn

√
	

√

K̄123K̄2

K̄1(K̄1 + K̄2)
(14)

r̄2 = L‖
2πn

√
	

√

K̄123K̄1

K̄2(K̄1 + K̄2)
, (15)

	 = ln


 L‖

2πnrc

√

K̄123(K̄1 + K̄2)

K̄1K̄2


 , (16)

and


K̄123 = K̄3 − K̄2 − K̄1. (17)

These estimates are valid when r1, r2 � L‖, implying that 2πn
√

	 � 1.
This bound state of linked defects provides the local minimum of the free energy. To

prove this statement, we calculate the second variation of the functional (9) (in the reduced
form of equation (9). The first one vanishes due to the definition of the linked state. Thus

δ2F̄12 =
∫ L‖

0
δ2F̄ 12(z) dz, (18)

where

δ2F̄ 12(z) = γ1S
2

{
A1(δr1 + δr2)

2 + A2(δr1)
2 + A3(δr2)

2 + A4

(
d

dz
δr1

)2

+ A5r̄
2
1

(
d

dz
δϕ1

)2

+ A6

(
d

dz
δr2

)2

+ A7r̄
2
2

(
d

dz
δϕ2

)2
}

. (19)

Here the spatial position of the defects is parametrized, using the cylindrical coordinate system
(r, ϕ, z), in the following way: (r1,2(z), ϕ1,2(z), z), where

r1,2(z) = r̃1,2 + δr1,2(z), (20)

ϕ1,2(z) = π
1,2 + 2πn
z

L‖
+ δϕ1,2(z), 
1 = 0 and 
2 = 1, (21)

where r̃1,2 and the first two terms in equation (20) describe the equilibrium form of the two
linked defects. See equations (12) and (13) and explanations above them. The coefficients
A1, . . . , A7 entering equation (19) are positive (if 
Kλ1,λ2,λ3 > 0) and can be expressed as
follows:

A1 = 
Kλ1,λ2,λ3

2(r̄1 + r̄2)2

(
1 + o

(
1

	1−α

))
, (22)

A2,3 = π2n2 Kλ1,2

L2
‖

	

(
1 + o

(
1

	1−α

))
, (23)

A4,...,7 = 1

2

(
1 + o

(
1

	1−α

))
. (24)

Here α is any 0 < α < 1.
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We point out that the absence of other possible terms in equation (19), for example such
as δϕ1,2δr1,2, follows from the straightforward calculations and the spatial symmetry of the
system. The latter one means that functional (9) is invariant under transformations such as
reflections, translations and rotations in our solid torus, and that the equilibrium state of the
two line defects is invariant under the helical symmetry. This symmetry includes a half-turn
around a certain axis perpendicular to the axis of the two-helical state. The first derivatives of
the free energy (9) with respect to ϕ1,2 vanish at the helical state for the same reason.

Recall that equations (20) and (21) imply general though smooth enough perturbations of
the helical form of the two linked defects described above.

Thus we may see that the steady state of two linked line defects corresponds to the local
minimum of the free energy. It means that the steady state is stable at least locally.

3. Verification of the opposite triangle condition for a model of the biaxial nematics

In this section, we checked the opposite ‘triangle’ inequalities: K̄λ1 + K̄λ2 < K̄λ1◦λ2 for the
simplest possible case of the elasticity model.

The constants K̄λ are calculated for a particular case when

γ1 = γ2 = γ3 = γ.

In this case (see [9, 5])

K̄i = (1 + T/S)2,

K̄k = 4T 2/S2,

K̄j = (1 − T/S)2,

K̄−e = 16T 2/S2.
(25)

We see that

K̄i > K̄j > K̄k, (26)

and

K̄k + K̄k < K̄−e,

K̄k + K̄i > K̄j ,

K̄i + K̄i > K̄−e,

K̄k + K̄j < K̄i,

K̄j + K̄i > K̄k, (27)

for all possible ranges of the parameter T/S: S/3 > T > 0. For the pair of two j defects we
have

K̄j + K̄j > K̄−e when
T

S
<

2
√

2 − 1

7
, (28)

K̄j + K̄j < K̄−e when
T

S
>

2
√

2 − 1

7
. (29)

These inequalities mean that only pairs of line defects with (λ1, λ2) = (k, k) and
(λ1, λ2) = (k, j) form the stable bound states in the model of biaxial nematics considered in
this section when T/S < (2

√
2 − 1)/7. Besides, these two pairs of defects the stable linked

state may form the pair (λ1, λ2) = (j, j) when (2
√

2 − 1)/7 < T/S < 1/3.
Using the standard arguments of general position, it is possible to prove that our

conclusions remain valid in a vicinity of the space of parameters (γi) which are not necessarily
equal.
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4. Discussion and conclusions

Linked bound states of line defects described in this paper may be important to condensed
matter, since they may exist in asymptotic relaxed state of the system.

We considered the linked defects inside the solid torus S ′1 × D2 that corresponds to the
periodic boundary conditions along the defects. The effect considered in the paper can take
place also for more general boundary conditions, when pinning of the line defects is possible.
Methods developed in the previous sections may be applied to other systems.

4.1. Uniaxial nematics

In this case, the order parameter space is M = RP 2 and π1(M) = Z2. Hence the combination
of two defects results in a nonsingular state, whereas the defects attract each other. Hence,
there is no bound linked state of two defects of the type considered above.

4.2. Cholesterics

There are natural candidates for the existence of the bound linked states of two defects since
they have globally the same order parameter [2] as biaxial nematics. However, the situation
is more subtle because locally the order parameter is the same as in the uniaxial nematics.
Unlike nematics, the state of cholesterics is not fixed by the director (	n) which varies in
space and describes a spiral curve. As a result the elastic properties of cholesterics is highly
anisotropic, and singularities in the director field are the most energetically unfavourable. The
line defect types may be chosen so that the effective elastic constants for the line defects of the
conjugation classes −e and i are considerably less than the effective elastic constant for the
conjugation classes j and k, with the director field having no singularities for the former two
classes. Such a situation is described sometimes in terms of ‘double topology’ [2]. It is natural
to conjecture that these properties of cholesterics lead to the existence of bound linked states
of two line defects of type i and two line defects of types i and j (or k). We will consider this
problem in the forthcoming, detailed paper. Finally, we mention some other systems where
the configuration of linked defects can exist.

4.3. Superfluid 4He

Here the order parameter is a complex function ψ = |ψ | eiϕ , where ψ as a function of the
space coordinates is governed by the GL equation. The space of the order parameter is equal
to S1 with π1(S

1) = Z. In this case the existence of vortices is well known. The opposite
‘triangle’ condition is obviously valid for vortices with almost parallel vorticities, and hence
linked vortices may exist. In a rotating vessel, the vortex lattice transforms into a dynamical
system of linked lines and this state corresponds to a turbulent regime. This regime is widely
discussed in the current literature [14, 15].

4.4. Superfluid 3He

There is a lot of different line defects in superfluid 3He depending on the phase (A or B) and
on the strength of spin–orbital interaction [10, 11]. Some of them may form bound linked
states.
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4.5. Blue phase

The next example is a specific class of cholesteric blue phases. Here we encounter a new
phenomenon. To study blue phases it is necessary to take into account the surface term in the
density of potential energy.

4.6. Unconvential superconductivity

Our last example is recently discovered unconventional superconducting states of Sr2RuO4

and PrOs4Sb12 [12]. It has been proposed that the superconducting order parameter is a triplet
in both cases. An analogy with superfluid phases in 3He looks quite natural. So it is possible to
propose the existence of similar vortex structure in these systems. For example, half-quantum
vortices in Sr2RuO4 were discussed in [13].

Acknowledgments

We thank Professor K Maki for the discussions and useful comments. This research was
supported in part by the Russian Foundation for Basic Research (Grant No 05-1-00964) and
Scientific Schools (Grant No 99-2185-1). One of the authors (MM) also thanks the Max
Planck Institute of Physics for Complex Systems for the kind hospitality and financial support.

Appendix

A few technical details to obtain equations (12)–(16) are considered in this appendix.
After differentiation of the reduced free energy (11) of the state of two nested in each

other helical defects described in section 2.2.2 with respect to radii r1 and r2 of these helices,
we obtain the following two equations for r̃1 and r̃2:

(

K̄123 − 2π2n2

(
K̄1x

2
1 + K̄2x

2
2

)) 1

x1 + x2
= 4π2n2K̄1x1

(
ln(x1 + x2) + ln

L‖
rc

)
, (A.1)

(

K̄123 − 2π2n2

(
K̄1x

2
1 + K̄2x

2
2

)) 1

x1 + x2
= 4π2n2K̄2x2

(
ln(x1 + x2) + ln

L‖
rc

)
, (A.2)

where x1 = r̃1/L‖ and x2 = r̃2/L‖. The variables x1 and x2 enter symmetrically on the
left-hand side of these equations and in the brackets on the right-hand side of them. It gives
that

x2 = x1
K̄1

K̄2
, (A.3)

and

K̄2
K̄123 = 2π2n2x2
1

((
K̄2

1 + K̄2
1

)
+ 2K̄1(K̄1 + K̄2)

(
ln x1 + ln

L‖(K̄1 + K̄2)

rcK̄2

))
. (A.4)

The latter equation contains the large parameter ln L‖/rc when rc/L‖ → 0. All other
parameters entering this equation are of the order of 1. It means that x1 ∝ 1/

√
ln L‖/rc

at rc/L‖ → 0 and tends to 0 at rc/L‖ → 0. Nevertheless | ln x1|/ ln(L‖/rc) ∝
ln ln(L‖/rc)/ ln(L‖/rc) → 0 at rc/L‖ → 0. It means that equation (A.4) can be solved
iteratively using the fact that the absolute value of the first logarithm on the right-hand side of
this equation is much less than the second logarithm there. The leading term of the asymptotics
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x1 = x̄1(1+o(lnα−1(L‖/rc)) at rc/L‖ → 0 for any 0 < α < 1 may be obtained by substituting
this expression into equation (A.4) and neglecting minor terms:

K̄2
K̄123 = 4π2n2K̄1(K̄1 + K̄2)x̄
2
1 ln(L‖/rc).

These arguments give asymptotics (12)–(16). We pay attention to the fact that a numerical
factor of the order of 1 under the logarithm in the definition (16) has no significant sense and
was introduced for convenience only.

References

[1] Mermin M D 1979 Rev. Mod. Phys. 51 591
[2] Monastyrsky M I 1993 Topology of Gauge Fields and Condensed Matter (New York: Plenum)
[3] Kleman M 1989 Rep. Prog. Phys. 52 555
[4] Zapotocky M, Goldbart P M and Goldenfeld N 1995 Phys. Rev. E 51 1216
[5] Priezjev N V and Pelcovits R A 2002 Phys. Rev. E 66 051705
[6] de Gennes P G and Prost J 1993 The Physics of Liquid Crystals 2nd edn (Oxford: Oxford University Press)
[7] Toulouse G 1977 J. Physique 38 L67
[8] Govers E and Vertogen G 1984 Phys. Rev. A 30 1998
[9] Sukumaran S and Ranganath G S 1997 J. Physique II 7 583

[10] Salomaa M M and Volovik G E 1987 Rev. Mod. Phys. 59 333
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